a2 United States Patent

BienkowskKi et al.

US009058424B1

US 9,058,424 B1
Jun. 16, 2015

(10) Patent No.:
(45) Date of Patent:

(54) AUTOMATIC UNIT TEST GENERATION AND
EXECUTION

(71) Applicant: The MathWorks, Inc., Natick, MA
(US)

(72) Inventors: Joseph R Bienkowski, East
Longmeadow, MA (US); David M.
Saxe, Stow, MA (US); Richard M.
McKeever, Springfield, MA (US); John
E. Booker, Jamaica Plain, MA (US);
Andrew T. Campbell, Medway, MA
(US)

(73) Assignee: The MathWorks, Inc., Natick, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 182 days.

(21) Appl. No.: 13/662,713

(22) Filed: Oct. 29,2012
(51) Int.ClL
GOG6F 9/44 (2006.01)
GOG6F 11/36 (2006.01)
(52) US.CL
CPC i GO6F 11/3668 (2013.01)
500 —4

(58) Field of Classification Search
USPC ittt 717/127, 131
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

3/2005 Daviaetal.cccooe.. 717/127
8/2006 Hibbeler et al. 717/124

6,865,731 B2 *
7,093,234 B2 *

8,056,060 B2* 11/2011 Bicheno etal. 717127
8,453,112 B1* 5/2013 Brambleyetal. 717110
8,584,079 B2* 11/2013 Yassinetal. 717/101
2005/0091003 Al* 42005 Wu ... 702/183

* cited by examiner

Primary Examiner — Hang Pan
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

(57) ABSTRACT

A computing device may obtain usage information relating to
an execution of a function within code. The usage information
may include a set of input values and an output value obtained
based on executing the function using the set of input values.
The computing device may further determine that the func-
tion has been executed a particular quantity of times using the
set of input values and obtaining the output value, and may
generate a unit test, for the function, based on determining
that the function has been executed the particular quantity of
times using the set of input values and obtaining the output
value.

21 Claims, 14 Drawing Sheets

510 J‘[

OBTAIN CODE }

520 IDENTIFY A PORTION OF CODE AS CANDIDATE FOR
UNIT TESTING

530 -/‘!

OBTAIN AND STORE USAGE INFORMATION
ASSOCIATED WITH THE PORTION OF CODE

jPa—

540

NO

YES

550 J‘{ GENERATE UNIT TEST FOR THE PORTION OF CODE

560 \,{ ASSOCIATE UNIT TEST WITH PCRTICN OF CODE

580 J‘[

870 -/‘{DETERSVENE CERTAINTY INFORMATION FOR UNIT TEST]

STORE CERTAINTY INFORMATION

US 9,058,424 B1

Sheet 1 of 14

Jun. 16, 2015

U.S. Patent

Vi "Old

40IA3d
ONILNGWOD

it

pus ¢
A+ X = }nso; Z
{A)uonaun-UonINpe = Jnsal uonouny |

dieH si00] tewicd 8|dwWod uoREINWIS MOIA JPT o)l

uopounduoyippe

N_3oBHaul

JEYIY

> 0oL

US 9,058,424 B1

Sheet 2 of 14

Jun. 16, 2015

U.S. Patent

al "Old

poe

Z = |8y
(¢°})uonoun juonippe
Jloineysg s Aepoy

e = }inssy
(z'}Juonounguonppe
Joineyag s Aeplajsap

L Jageud nok ey Jojneyaq oy}

.ﬂom.._mw ‘paBueyd ..mmn.ﬁ... JJuonoung 1o JolABYSq By

11NS3d 1831 1NN

pus ¢
A X =]nsai A

(Axjuonounguonippe = nsal uopouny |

3AA30
ONILNdNOD

digH SI00] 1BULO SJICLOD LONEINUIS MSiA 1P3 Bl

uofioun4uonippe

/mvumtmuc_

J8sn

US 9,058,424 B1

Sheet 3 of 14

Jun. 16, 2015

U.S. Patent

Il "9ld

30130
ONILNdWOD

A SI SB 8ABE7 _w\%sotma&u

Qv

£, X =1l 78U

108 U UIBJU0D AEW 8po5 10 (s)aUl| Bumajo] m..r_ L
*Apoalioo Buiaeysq JaBuoj ou sI'8pod INoA

1'INS3d 1531 LINN

pus ¢
A, X=]nsal Z

(AxJuonoun4uonippe = Jnsal uogoun; |

H slooy lewiod sidwod uogeinuis melp Ip3 ol

dje

E uorounjuoippe

"_2oeHaI]

J8sn

US 9,058,424 B1

Sheet 4 of 14

Jun. 16, 2015

U.S. Patent

¢ Ol

Sle
FANLONYLS
Y1vd

[S]%4
(301) LNIFWNOHIANEA
ONILNdINOD TYIINHOAL

(o1
301A30
ONILNJNOD

US 9,058,424 B1

Sheet 5 of 14

Jun. 16, 2015

U.S. Patent

€ 9Old

0ce
H0O8S300Hd

oee
AHCOWNSIN

1194
Eloi

0] 74
JOVHOLS

ke (\A

snd

Cie

JOVAH3LNI
NOLLVOINNIWWGO

09¢€
LNdino

§]%1%
1NdNI

US 9,058,424 B1

Sheet 6 of 14

Jun. 16, 2015

U.S. Patent

¥ "Old

[147%
H0O1NO0=X4
1851

0Z¥
H971140Hd
340D

1572
HOLVHANTD
1841

[o1%
H3d103d

SO¥
HOLINOW J9VSN

U.S. Patent Jun. 16, 2015 Sheet 7 of 14 US 9,058,424 B1

500 '1
510 -~ OBTAIN CODE)
520 -~ IDENTIFY A PORTION OF CODE AS CANDIDATE FOR |
UNIT TESTING
OBTAIN AND STORE USAGE INFORMATION
530 —~ ASSOCIATED WITH THE PORTION OF CODE [

GENERATE
UNIT TEST?

540

GENERATE UNIT TEST FOR THE PORTION OF CODE

Y
ASSOCIATE UNIT TEST WITH PORTION OF CODE

L]

570 -/{DETER%VHNE CERTAINTY INFORMATION FOR UNIT TEST
¥
_,{ STORE CERTAINTY INFORMATION

550

o60

AN

v,

FIG. 5

US 9,058,424 B1

Sheet 8 of 14

Jun. 16, 2015

U.S. Patent

9

Old

£ DINYNAQ L | AOAD 5 q+e=ynsas [g0z S0z | 00b 00 3
e e e P e e EoSe e
{2 DINYNAG 7l ADAD 0 qeB=ynsel | 0f G0z TR PO
— s oY
{ o JiTHoNoD | el ADAD 0 gre=ynsal |) L3S 97 [%
.\..................... p—" pa— e oo e T == S ———— -----.................... 009
{ 00 31340NOD tL ADAD 000} g+ e =}nsel § Ly3sn €'z r)
...HH PO P P — e P Y TSNS APy e e HH.. 99
{ 1L ZOAD ! q-e=nsal 9 et ez i
RSN FUUUUUUUN FUTURSOUON STUIOUUSUUUUTN VORI S S WA R A
— - 99
s s 57 T T 4] 074 39
e 1831 AL | 30UN0STY | o Dooem | NOULONNE | INdLNO | 30¥N0S | 1NN
019 G0g
NOLLYWHOANI | NOILYIWHOANI
NOIL¥Od 3000
»— 009

US 9,058,424 B1

Sheet 9 of 14

Jun. 16, 2015

U.S. Patent

ﬁ NOILIONOO F18ISSOd 40 438N AZILON T StL
$3A
0L
ON
\%
1S3L LINN ALIMONd LSTHOIH 3LNOAX3 a
1831 NOLLYIWHOANI)
1IN ALIHOMd 1SAHOIH 1XAN 21n03X3 ALNIVLY30 NO 03SYE SLS3L LINN 3ZILhod = 04
3000 19}
40 NOLHOd O ONILYTY S1S3L LING AJLINIQI
¢031103X4 N334

SLS3L LIND TV 3AYH

Gel

¢C3ONYHD 300D 40 NOILYOd SYH 0L

US 9,058,424 B1

Sheet 10 of 14

Jun. 16, 2015

U.S. Patent

a8 "oOld

- 8E8- .

%/ﬁ ——

0eg

818 pus LE
./g +B=jnses 9¢
SUINOIUORIPPE = JNS8l uoiouny cE

(9'8)
N O
9l8

718 plg

dipH o], Jewdog sjdwo) uoneinwis MelA 1P e

008

0l18

V8 "Old

.

vmw\/\ G = Jnsal

| 6=
{8 ™~ ANHN

ANIT ANYIWNOD

8i8 pua e
|/n+muw_:me 9¢
BUINOIUORIPPE = JNS8) uogouny e

(q'e)
P
918 7218 g -

| S

L

digH S|o0L Jeuuod s|dwoD uonenWIS MBI UPpT a4

008

018

US 9,058,424 B1

Sheet 11 of 14

Jun. 16, 2015

U.S. Patent

J8 Ol

ey
08 puse A%
./fmnw_:me 9E 1
S\imczsohco_%cm = Hw& uonoun} Ge
918 218 ylg -
. »— 508

008

018

US 9,058,424 B1

Sheet 12 of 14

Jun. 16, 2015

U.S. Patent

g6 'Old

16 [4%)
P yom .\,
ﬁ 8|40 MOUS u h AicysiH moyg u
SR wwm _ Nmm _
_ h daay u h Honsy u
- f = ._H_:we g+ =)nsal
n B = }nsal @m aury
S _ :8p02 10 al| mc_go__e
L mE E_g POIBIDOSSE S| UONIPUOD [eruajod v
-
0Z6 pus Ay
(5 e=]nsal 9
(qB)aunholuoIppE = Ynsel sunnol Ge /
018
B > 03
.eur sjoo] Jeuuod s|dwos uole|nlis MeiA Upa 8l
¥ 008

V6 "Old

48 216
) 3
' rad
m 9|l0ld moyg u h AI0ISIH MOYS u
ole .. - G06
o)
9 G
= (g'z)ounoiuonippe |} = (g'z)aunoiuoippe
IoABYag JuaLny IoIABYSY SnoiAaId
“19ja1d noA 121 Jaineysq sy} 199[9S
"BUIINO] SIY) UM PSIBIDOSSE §) UoRpUoa [enualod
o
006
pus 18
q.E=}nsal 9¢ K
(Q°eJsunnOIUCHRPR = NS BURNQI Ge L
u ¥ g
fd
disp sjoo) jewlod @jdwod uonenuig meip P38l
¥ 008

US 9,058,424 B1

Sheet 13 of 14

Jun. 16, 2015

U.S. Patent

ae Ol

[~1

felie 7xz 2nsay
Y621 2102/ (Bus, 'Z)sunnoluofippy

o6\ __%@H o gnsay
© “LLovZEZl0zRYS | “(2'2)eunaionppy

056 ~ SINSSY 19811000

: L 207 unsay
z1'91:60 2102/rHa - (z'00z)eunnouoIppY
L Giinssy
U YESYTLZI0zEls (g)eunnouomppy "
5v6 | M6, pinsey| 9€
: Loocezl zozzis Mz zeunanomppy | 5 yw
GPB ~o SINSAY 1381107
P
- 06
. _‘P|| mow
L4
djeH {001 lewlod s(dwod uonenwig MAIA P31
> 0o

J6 'Old

.M,
v.vm ZLe
27 P
alll0)d MOYS . fI01SIH MOyS
. _ =©mm. . .. - V6
aoe|day 5 _ - . _
:9p09 J0 (S)ul) JUswsde|doy
doay _ ©Q+B=)NS8I oC Ul
A o :ap09 Jo auj) Buimo)jo
Bl Y)IM PSiBIn0osse 1 Lolipuod |equsiod v
7
0¢s pus YA
q + & =nsal ot /
e (g'2)sunnoiuonippe = |nsal supnol se) | org
- »— og
dieH sjool jewuog ejidwod uogenwis main UpF Sl

US 9,058,424 B1

Sheet 14 of 14

Jun. 16, 2015

U.S. Patent

46 Ol

T AP Y
s 1880

B LSl ‘oB2sn Alowojy -
o 10 rsuoneinduwen -
Ay e uny -

@wm ..\\. wmmw:mo.sow@m

vﬁvm._umEE Ec SUOHIPUOD) -
%8P / €1 {poIpaLIS) SUCHPUGD -

/7 :suonipuon) [B)o] -

uolpuen
__ Cpe—"
.,ﬁm NN \ omw mmm_msoo 1881 1un olweuAg -] 48
%6°01 / 011 :8f21en00 1531 Jun selouoy - | 9E /
%9'e€ / Ove ebeieropiseLyun =1 S€J | oro
7101 :9p0D J0 Ul -
%E@éo_
R N@m:\
7140843000 __
T2
— 096 »— 08
disH /0] Jewiod ejdwo) uopenwis May WP 8l
¥»— 008

US 9,058,424 B1

1
AUTOMATIC UNIT TEST GENERATION AND
EXECUTION

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1C are diagrams of an example overview of an
implementation described herein;

FIG. 2 is a diagram of an example environment in which
systems and/or methods, described herein, may be imple-
mented;

FIG. 3 is a diagram of example components of a computing
device of FIG. 2 according to one or more implementations
described herein;

FIG. 4 is a diagram of example functional components of a
computing device of FIG. 2 according to one or more imple-
mentations described herein;

FIG. 5 is a flow chart of an example process relating to
generation of a unit test;

FIG. 6 is an example data structure that stores usage infor-
mation associated with a portion of code;

FIG. 7 is a flow chart of an example process relating to
executing a unit test;

FIGS. 8A-8C are example user interfaces via which a user
may interact with a portion of code; and

FIGS. 9A-9E are example user interfaces that may be pro-
vided to a user in connection with the execution of a unit test.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings. The same labels and/or reference numbers in
different drawings may identify the same or similar elements.

Systems and/or methods, described herein, may facilitate
the debugging of code by a user. In some implementations, a
computing device may identify a portion of code that is a
good candidate for testing. The computing device may record
information, such as inputs and outputs of the portion of code,
when the portion of code is executed. Once the portion of
code has been executed a number of times with the same
inputs and the same output, the computing device may be able
to determine, based on the recorded information, how the
portion of code is to operate. Once enough information has
been recorded, the computing device may automatically gen-
erate a unit test. In some implementations, the computing
device may generate the unit test without the user’s knowl-
edge. Thereafter, each time the portion of code is changed, the
computing device may run the unit test to detect potential
bugs introduced into the portion of code. In some implemen-
tations, the computing device may run the unit test without the
user’s knowledge. If the unit test fails, meaning that a bug
may have been introduced into the portion of code, the com-
puting device may alert the user. In this way, the user may
obtain debugging information while the user is creating or
editing code.

Systems and/or methods, as described herein, may use a
computing environment, such as a technical computing envi-
ronment (TCE), for performing computing operations. A
TCE may include any hardware and/or software based logic
that provides a computing environment that allows tasks to be
performed (e.g., by users) related to disciplines, such as, but
not limited to, mathematics, science, engineering, medicine,
and business. The TCE may include text-based environments
(e.g., MATLAB® software), a graphically-based environ-
ment (e.g., Simulink® software, Stateflow® software, Sim-
Events® software, etc., by The MathWorks, Inc.; VisSim by
Visual Solutions; LabView® by National Instruments; etc.),
or another type of environment, such as a hybrid environment

10

15

20

25

30

35

40

45

50

55

60

65

2

that may include, for example, one or more of the above-
referenced text-based environments and one or more of the
above-referenced graphically-based environments.

The TCE may be integrated with or operate in conjunction
with a graphical modeling environment, which may provide
graphical tools for constructing models or systems or pro-
cesses. The TCE may include additional tools, such as tools
designed to convert a model into an alternate representation,
such as source computer code, compiled computer code, or a
hardware description (e.g., a description of a circuit layout).
In an implementation, the TCE may provide this ability using
graphical toolboxes (e.g., toolboxes for signal processing,
image processing, color manipulation, data plotting, parallel
processing, etc.). In another implementation, the TCE may
provide these functions as block sets. In still another imple-
mentation, the TCE may provide these functions in another
way.

Models generated with the TCE may be, for example,
models of a physical system, a computing system, an engi-
neered system, an embedded system, a biological system, a
chemical system, etc.

A model generated with the TCE may include, for
example, any equations, assignments, constraints, computa-
tions, algorithms, and/or process flows. The model may be
implemented as, for example, time-based block diagrams
(e.g., via the Simulink software), discrete-event based dia-
grams (e.g., via the SimEvents software), datatlow diagrams,
state transition diagrams (e.g., via the Stateflow software),
software diagrams, a textual array-based and/or dynamically
typed language (e.g., via the MATL AB software), and/or any
other type of model.

As previously mentioned, an example implementation of
the TCE may use one or more text-based products, such as
textual modeling environments. For example, a text-based
modeling environment, may be implemented using additional
products such as, but not limited to Octave, Python, Comsol
Script, and MATRIXx from National Instruments; Math-
ematica from Wolfram Research, Inc.; Mathcad from Math-
soft Engineering & Education Inc.; Maple from Maplesof;
Extend from Imagine That Inc.; Scilab from The French
Institution for Research in Computer Science and Control
(INRIA); Virtuoso from Cadence; or Modelica or Dymola
from Dynasim. In some implementations, the text-based
modeling environment may include hardware and/or soft-
ware based logic that provides a computing environment that
allows users to perform tasks related to disciplines, such as,
but not limited to, mathematics, science, engineering, medi-
cine, business, etc., more efficiently than if the tasks were
performed in another type of computing environment, such as
an environment that required the user to develop code in a
conventional programming language, such as C++, C, For-
tran, Pascal, etc.

In an implementation, the text-based modeling environ-
ment may include a dynamically typed language that may be
used to express problems and/or solutions in mathematical
notations. For example, the modeling environment may use
an array as a basic element, where the array may not require
dimensioning. These arrays may be used to support array
programming in that operations can apply to an entire set of
values, such as values in an array. Array programming may
allow array-based operations to be treated as a high-level
programming technique or model that lets a programmer
think and operate on whole aggregations of data without
having to resort to explicit loops of individual non-array, i.e.,
scalar operations.

The modeling environment may further be adapted to per-
form matrix and/or vector formulations that may be used for

US 9,058,424 B1

3

data analysis, data visualization, application development,
simulation, modeling, algorithm development, etc. These
matrix and/or vector formulations may be used in many areas,
such as statistics, finance, image processing, signal process-
ing, control design, life sciences, education, discrete event
analysis and/or design, state based analysis and/or design, etc.

In another example implementation, the TCE may be
implemented in a graphically-based modeling environment
using products such as, but not limited to; VisSim by Visual
Solutions; LabView® by National Instruments; Dymola by
Dynasim; SoftWIRE by Measurement Computing; WiT by
DALSA Coreco; VEE Pro or SystemVue by Agilent; Vision
Program Manager from PPT Vision; Khoros from Khoral
Research; Gedae by Gedae, Inc.; Scicos from (INRIA); Vir-
tuoso from Cadence; Rational Rose from IBM; Rhopsody or
Tau from Telelogic; Ptolemy from the University of Califor-
nia at Berkeley; or aspects of a Unified Modeling Language
(UML) or SysML environment.

FIGS. 1A-1C are diagrams of an example overview 100 of
an implementation described herein. Assume, for overview
100, that a user has added a function, called “additionFunc-
tion,” to a portion of code, as illustrated in FIG. 1A. The
function adds two variables, named “x” and “y,” together to
obtain an output, named “result.” Assume further that, in
creating the portion of code, the user has caused the comput-
ing device to execute the function a number of times with a
value of “x” set to 1 and a value of “y” set to 2, and obtained
a“result” of 3. The computing device may record information
relating to the executions of the function. The recorded infor-
mation may include, for example, information relating to the
inputs to the function, information relating to the outputs of
the function, information relating to the usage of resources
when the function was executed, information relating to
instances when the execution of the function failed, etc. The
computing device may further generate a unit test, for the
function, based on the recorded information. In some imple-
mentations, the recording of the information relating to the
executions of the function and the generation of the unit test
for the function may be performed automatically and without
the user’s knowledge.

With reference to FIG. 1B, assume that at some later point
in time, the user has altered the portion of code, such that the
function now multiplies the variables “x” and “y.” The com-
puting device may detect this change to the function and may
automatically, and possibly without the user’s knowledge,
run the unit test. In so doing, the computing device may
identify that the value of the output, named “result,” has
changed from a value of 3 to a value of 2. In this situation, the
computing device may determine that the behavior of the
function has changed and may alert the user, as illustrated in
FIG. 1B. The alert may identify the change in behavior and
may give the user the ability to revert back to the prior form of
the function. In some implementations, the alert may identify
the line(s) of code that caused the change in behavior of the
function, as illustrated in FIG. 1C.

The automatic generation and execution of unit tests may
enable a user to develop and/or troubleshoot code using less
time and/or resources than is used to develop or troubleshoot
code using manually created and/or executed unit tests. Thus,
automatically generating and executing the unit tests may
improve a user experience, and may save time and expense
associated with creating or editing code.

FIG. 2 is a diagram of an example environment 200 in
which systems and/or methods, described herein, may be
implemented. As illustrated, environment 200 may include a
computing device 205 and a data structure 215.

10

15

20

25

30

35

40

45

50

55

60

65

4

Computing device 205 may include one or more devices
that gather, process, search, store, and/or provide information
in a manner similar to that described herein. For example,
computing device 205 may include a server, a workstation, a
mainframe, a computer (e.g., a desktop computer, a laptop
computer, a tablet computer, etc.), and/or some other type of
computational device. Computing device 205 may generate,
compile, and/or execute code. Computing device 205 may
generate unit tests for portions of the code and may execute
one or more of the unit tests to identify one or more conditions
associated with the portions of the code.

Computing device 205 may host a TCE 210. TCE 210 may
include hardware-based logic or a combination of hardware
and software-based logic that provides a computing environ-
ment. TCE 210 may permit a user to perform tasks related to
a discipline or a domain. For example, TCE 210 may pertain
to mathematics, science, engineering, medicine, business,
and/or another type of discipline or domain in a manner
similar to that described above. In some implementations,
TCE 210 may be hosted by another device, such as a server,
that is located remotely from computing device 205.

Data structure 215 may include one or more devices that
store information used by computing device 205 to perform
operations described herein. Data structure 215 may, for
example, store code that is being or has been developed by a
user of computing device 205. Data structure 215 may also, or
alternatively, store information relating to execution of the
code, unit tests that have been generated for testing the code,
and/or other information relating to the development or test-
ing of the code. In some implementations, data structure 215
may be directly connected to computing device 205. In some
implementations, data structure 215 may be connected to
computing device 205 via a network, such as the Internet. In
some implementations, data structure 215 may be located
within computing device 205.

Although FIG. 2 shows example components of environ-
ment 200, in some implementations, environment 200 may
include additional components, fewer components, different
components, or differently arranged components than those
depicted in FIG. 2.

FIG. 3 is a diagram of example components of computing
device 205. As shown in FIG. 3, computing device 205 may
include a bus 310, a processor 320, a memory 330, a storage
340, an input component 350, an output component 360,
and/or a communication interface 370.

Bus 310 may permit communication among the other com-
ponents of computing device 205. For example, bus 310 may
include a system bus, an address bus, a data bus, and/or a
control bus. Bus 310 may also include bus drivers, bus arbi-
ters, bus interfaces, and/or clocks.

Processor 320 may interpret and/or execute instructions.
For example, processor 320 may include a general-purpose
processor, a microprocessor, a data processor, a graphical
processing unit (GPU), a processing core, an application spe-
cific integrated circuit (ASIC), an application specific instruc-
tion-set processor (ASIP), a system-on-chip (SOC), a pro-
grammable logic device (PLD), a chipset, and/or a field
programmable gate array (FPGA).

Memory 330 may store data and/or instructions related to
the operation and use of computing device 205. For example,
memory 330 may store data and/or instructions that may be
configured to implement an implementation described
herein. Memory 330 may include, for example, a random
access memory (RAM), a dynamic random access memory
(DRAM), a static random access memory (SRAM), a syn-
chronous dynamic random access memory (SDRAM), a fer-
roelectric random access memory (FRAM), a read only

US 9,058,424 B1

5

memory (ROM), a programmable read only memory
(PROM), an erasable programmable read only memory
(EPROM), an electrically erasable programmable read only
memory (EEPROM), and/or a flash memory.

Storage 340 may store data and/or software related to the
operation and use of computing device 205. For example,
storage 340 may include a hard disk (e.g., a magnetic disk, an
optical disk, a magneto-optic disk, a solid state disk, etc.), a
compact disc (CD), a digital versatile disc (DVD), a floppy
disk, a cartridge, a magnetic tape, and/or another type of
computer-readable medium, along with a corresponding
drive. Memory 330 and/or storage 340 may also include a
storage device external to and/or removable from computing
device 205, such as a Universal Serial Bus (USB) memory
stick, a hard disk, etc. In an implementation, as illustrated,
storage 340 may store TCE 210.

Input component 350 may permit the user and/or another
device to input information into computing device 205. For
example, input component 350 may include a keyboard, a
keypad, a mouse, a display (e.g., a touch screen), a touchpad,
a button, a switch, a microphone, a camera, an accelerometer,
a gyroscope, neural interface logic, voice recognition logic,
an input port, and/or some other type of input component.
Output component 360 may permit computing device 205 to
output information to the user and/or another device. For
example, output component 360 may include a display, a
speaker, a light emitting diode (LED), a haptic device, a
tactile device, an output port, and/or some other type of output
component.

Communication interface 370 may permit computing
device 205 to communicate with other devices, networks,
and/or systems. Communication interface 370 may include a
transceiver-like component. For example, communication
interface 370 may include an Ethernet interface, an optical
interface, a coaxial interface, a radio interface, and/or some
other type of wireless and/or wired interface.

As will be described in detail below, computing device 205
may perform certain operations relating to implementations
described herein. Computing device 205 may perform these
operations in response to processor 320 executing software
instructions (e.g., computer program(s)) contained in a com-
puter-readable medium, such as memory 330 and/or storage
340. A computer-readable medium may be defined as a non-
transitory memory device. A memory device may include
space within a single physical memory device or spread
across multiple physical memory devices. The software
instructions may be read into memory 330 from another com-
puter-readable medium, such as storage 340, or from another
device via communication interface 370. The software
instructions contained in memory 330 may cause processor
320 to perform processes described herein. Alternatively,
hardwired circuitry may be used in place of or in combination
with software instructions to implement processes described
herein. Thus, implementations described herein are not lim-
ited to any specific combination of hardware circuitry and
software.

Although FIG. 3 shows example components of computing
device 205, in some implementations, computing device 205
may include additional components, fewer components, dif-
ferent components, or differently arranged components than
those depicted in FIG. 3. Additionally, or alternatively, one or
more components of computing device 205 may perform one
or more tasks described as being performed by one or more
other components of computing device 205.

FIG. 4 is a diagram of example functional components 400
of computing device 205 according to one or more implemen-
tations described herein. Components 400 may be imple-

10

15

20

25

30

35

40

45

50

55

60

65

6

mented as a result of processor 320 executing instructions
stored in memory 330. As shown in FIG. 4, functional com-
ponents 400 may include a usage monitor component 405, a
decider component 410, a test generator component 415, a
code profiler component 420, and a test executor component
425.

Usage monitor component 405 may obtain usage informa-
tion for a portion of code. The usage information may, for
example, include input values, output values, and/or other
types of information relating to the execution of the portion of
code. The portion of code may, for example, correspond to a
function or some other portion of code that accepts inputs and
provides an output. In some implementations, usage monitor
component 405 may monitor a command line that is being
used by a user, associated with computing device 205, to
create or edit the portion of code. Usage monitor component
405 may capture input values, generated by computing device
205 and/or entered into the command line by the user, and
store the input values in association with information identi-
fying the portion of the code. Usage monitor component 405
may also, or alternatively, capture one or more output values
generated based on executing the portion of the code, using
the input values, and may store the output values in associa-
tion with the information identifying the portion of the code.
In some implementations, usage monitor component 405
may request usage information from a user. For example,
usage monitor component 405 may provide an interface, to
the user, requesting information relating to the portion of
code. The requested information may include, for example,
input values for the portion of code, data types that the portion
of'code accepts as inputs, and/or other information relating to
the portion of code that may be used to generate a unit test.
Usage monitor component 405 may store the usage informa-
tion in association with information identifying the portion of
code.

Decider component 410 may determine whether to gener-
ate a unit test for a portion of the code, based on the usage
information obtained by usage monitor component 405. For
example, decider component 410 may determine that a unit
test is to be generated for a particular portion of code based on
the particular portion of code being executed more than a
particular quantity of times with the same inputs and achiev-
ing the same output. The quantity of times may correspond to
one or more times. Decider component 410 may alternatively
determine that a unit test is to be generated based on one or
more other factors. When decider component 410 determines
that, based on the usage information, a unit test is to be
generated, decider component 410 may send an indication to
test generator component 415 indicating that the unit test is to
be generated.

Decider component 410 may determine whether to execute
a unit test based on detecting that a change has been made to
the portion of code. Decider component 410 may alterna-
tively determine whether to execute a unit test based on one or
more other factors. When decider component 410 determines
that a unit test is to be executed, decider component 410 may
send an indication, to test executor component 425, indicating
that a unit test is to be executed. When multiple unit tests are
to be executed, decider component 410 may prioritize the unit
tests and send an indication, to test executor component 425,
as to the order in which the unit tests are to be executed.

Test generator component 415 may generate a unit test for
aportion of code. For example, test generator component 415
may receive an indication, from decider component 410, that
aunit test is to be generated for the portion of the code. Based
on the indication, test generator component 415 may generate
code, for the unit test, that, when executed, enables comput-

US 9,058,424 B1

7

ing device 205 to perform a test on the portion of code to
determine whether a potential condition is associated with the
portion of code.

In some implementations, test generator component 415
may generate different types of unit tests for a portion of code.
The different types of unit tests may include a concrete unit
test and a dynamic unit test. A concrete unit test may include
a unit test that is generated, for a particular portion of code,
after the particular portion of code has been executed a par-
ticular quantity of times with the same user-provided input
values and has achieved the same output value. The output
value may correspond to a desired output value or an error. In
those situations where the same input values for a particular
portion of code result in the same error, test generator com-
ponent 415 may enable computing device 205 to generate a
concrete negative unit test. Additionally, or alternatively, a
concrete unit test may include a unit test that is generated
based on feedback from a user. For example, upon execution
of the portion of code, test generator component 415 may
provide a user interface that prompts the user to provide
parameters for the portion of code, such as a range of permis-
sible input values, permissible data types for the input values,
etc. Test generator component 415 may then generate a con-
crete unit test based on the user-provided parameters.

A dynamic unit test may include a unit test that is gener-
ated, for a particular portion of code, based on inputs that
were not provided by the user. For example, test generator
component 415 may analyze the user-provided inputs to the
particular portion of code and generate different inputs and/or
different input data types to determine how the particular
portion of code reacts to the different inputs and/or different
input data types. Test generator component 415 may generate
dynamic unit tests based on how the particular portion of code
behaves in response to the different inputs and/or different
input data types. Thus, test generator component 415 may
generate and associate a number of different unit tests with a
particular portion of code.

Code profiler component 420 may identify and/or track
unit tests associated with the code. For example, code profiler
component 420 may identify portions of code for which unit
tests have been generated. Code profiler component 420 may
also, or alternatively, identity other portions of the code for
which unit tests have not been generated. Code profiler com-
ponent 420 may identify a quantity of unit tests associated
with the code; types of unit tests; a quantity of potential
conditions associated with the code (e.g., based on executing
the unit tests); types of the potential conditions; etc.

Code profiler component 420 may also, or alternatively,
associate levels of certainty with the unit tests and/or test
results based on the types of unit tests, times when the unit
tests were generated and/or executed, etc. For example, code
profiler component 420 may associate a higher level of cer-
tainty with a concrete unit test, for a particular portion of
code, than a dynamic unit test for the particular portion of
code since the concrete test is generated based on input values
provided by the user. Similarly, code profiler component 420
may associate a higher level of certainty with a first concrete
unit test, for a particular portion of code, than a second con-
crete test for the particular portion of code based on a number
of factors. The factors may include, for example, the quantity
of times that the particular portion of code has been executed
with the input values, whether the concrete test is based on
information requested from the user, etc. As an example,
assume that the first concrete unit test is based on a first set of
input values, which achieves a first output value. Assume
further that the second concrete unit test is based on a second
set of input values, which achieves a second output value.

10

15

20

25

30

35

40

45

50

55

60

65

8

Lastly, assume that the particular portion of code has been
executed with the first set of input values and achieved the first
output value 1,000 times, while the particular portion of code
has been executed with the second set of input values and
achieved the second output value 40 times. In this example,
code profiler component 420 may associate a higher level of
certainty with the first concrete test than the second concrete
test.

Test executor component 425 may execute a unit test asso-
ciated with a portion of code. For example, test executor
component 425 may receive, from decider component 410, an
indication that a unit test is to be executed for the portion of
code. Test executor component 425 may, based on the indi-
cation, retrieve, for example, from data structure 215, lines of
code associated with the unit test. In one example, test execu-
tor 425 may use levels of certainty, associated with two or
more unit tests, to select a unit test with a highest level of
certainty and may execute the selected unit test. Test executor
component 425 may, for example, execute the portion of code
to generate a test result. Test executor component 425 may
provide a notification when the test result indicates that a
potential condition is associated with the portion of code. Test
executor component 425 may provide recommended instruc-
tions, which can be selected by the user, to cause computing
device 205 to modify the portion of code to remedy the
condition.

Although FIG. 4 shows example functional components of
computing device 205, in some implementations, computing
device 205 may include additional functional components,
fewer functional components, different functional compo-
nents, or differently arranged functional components than
those depicted in FIG. 4. Additionally, or alternatively, one or
more functional components of computing device 205 may
perform one or more tasks described as being performed by
one or more other functional components of computing
device 205.

FIG. 5 is a flow chart of an example process 500 relating to
the generation of a unit test. In some implementations, pro-
cess 500 may be performed by computing device 205. In
some implementations, process 500 may be performed by a
device, or group of devices, separate from, or in combination
with, computing device 205. FIG. 6 is an example data struc-
ture 600 that stores usage information associated with a por-
tion of code. Data structure 600 may be stored by data struc-
ture 215. In the description below, all or a portion of process
500 will be described with references to data structure 600 of
FIG. 6.

As shown in FIG. 5, process 500 may include obtaining
code (block 510). For example, computing device 205 may
receive a request, from a user of computing device 205, to
access code. Computing device 205 may, in response to the
request, retrieve the code from a memory associated with
computing device 205 and/or from data structure 215. In one
example, computing device 205 may provide, for display, a
user interface that depicts all or a portion of the code. The
code may include lines of code that include functions, vari-
ables, etc.

Process 500 may also include identifying a portion of code
as a candidate for unit testing (block 520). For example,
computing device 205 (e.g., decider component 410) may
identify a portion of code, as a candidate for unit testing,
based on the user editing the portion of code. Additionally, or
alternatively, computing device 205 may identify a portion of
code, as a candidate for unit testing, based on the portion of
code being previously edited and executed, either directly or
indirectly, a particular quantity of times; the portion of code
being shared with other users; the portion of code being

US 9,058,424 B1

9

submitted to a file exchange (e.g., a community code reposi-
tory or another location where code is shared) that allows
users to obtain and use code from other users; the portion of
code being associated with more than a particular amount of
documentation; the portion of the code being published or
ready for publishing; the portion of the code being associated
with metrics having at least a particular level of complexity;
etc. Additionally, or alternatively, computing device 205 may
identify the portion of code based on information from the
user. For example, computing device 205 may receive infor-
mation, from the user, specifying that a unit test is to be
generated for the portion of code. Other manners of identify-
ing a portion of code may additionally or alternatively be
used.

Process 500 may further include obtaining usage informa-
tion for the portion of code (block 530). For example, com-
puting device 205 (e.g., usage monitor component 405) may
monitor the execution of the portion of code, whenever the
portion of code is directly executed on behalf of the user or
when the portion of code is executed as a result of being called
by another portion of the code. Computing device 205 may
obtain usage information relating to the execution. The usage
information may include, for example, information relating
to a set of input values (referred to hereinafter as “input
values”) for the portion of code, and information relating to
the output value of the portion of code when the portion of
code is executed using the input values. The set of input
values may include zero or more input values.

Additionally, or alternatively, the usage information may
include information relating to usage of resources when the
portion of code was executed (e.g., a quantity of computations
performed, clock cycles used, processing capacity used, run
time expended, a quantity of memory used (e.g., peak
memory usage, average memory usage, net memory usage,
etc.), anumber of calls made to another portion of code within
the code, etc., associated with executing the portion of the
code). Additionally, or alternatively, the usage information
may include information relating to instances when the
execution of the portion of code failed. Additionally, or alter-
natively, the usage information may include information from
the user, such as information that the user provided relating to
the portion of code. The information from the user may
include, for example, input values, a data type of the input
values, etc. In some implementations, computing device 205
may request the information from the user. The usage infor-
mation may include other information that may facilitate the
debugging of the portion of code.

In some implementations, computing device 205 may
obtain usage information relating to another portion of the
code. For example, computing device 205 may identify
another portion of code that calls the portion of code and/or is
called by the portion of code. Computing device 205 may,
based on identifying the other portion of code, retrieve other
usage information associated with the other portion of code.

Process 500 may further include storing the usage infor-
mation (block 530). For example, computing device 205 (e.g.,
usage monitor component 405) may store the obtained usage
information in a memory, such as data structure 215. As an
example, and with reference to FIG. 6, data structure 600,
which may be stored in data structure 215, may include a
collection of fields, such as a code information field 605, a
portion information field 610, an input field 615, a source field
620, an output field 625, a function field 630, an execution
quantity field 635, a resource field 640, a time field 645, a test
field 650, and a certainty score field 660. Particular fields,
shown with respect to data structure 600, are included for
explanatory purposes. In other implementations, there may

20

30

40

45

10
be additional fields, fewer fields, different fields, or differ-
ently arranged fields than are shown with respect to FIG. 6.

Code information field 605 may, for example, store infor-
mation that identifies particular code (e.g., a file name, a code
identifier, etc.). Portion information field 610 may, for
example, store information that identifies a particular portion
of'the code identified in field 605 (e.g., an identifier associated
with a line of code, a name of a function, etc.). Input field 615
may store one or more input values that were used during an
execution of the portion of the code by computing device 205.
The input values may, for example, correspond to one or more
input variables associated with the portion of the code. In one
example, input field 615 may store one or more input values
that are provided by a user via a command line. Additionally,
or alternatively, input field 615 may store input values that are
automatically generated by computing device 205 when
executing the portion of the code (e.g., generated from
another portion of the code). Additionally, or alternatively,
input field 615 may store input values, generated by comput-
ing device 205, for use in one or more dynamic unit tests.
Source field 620 may store information that identifies
whether the input values, identified by input field 615, are
provided by the user or generated by computing device 205.

Output field 625 may store one or more output values that
are generated as a result of executing the portion of the code
using the input values identified by input field 615. The one or
more output values may, for example, correspond to one or
more output variables associated with the portion of code.
Function field 630 may store information relating to the por-
tion of code. In one example, function field 630 may store one
or more lines of code within the portion of code (e.g., a
particular version of the function that is within the portion of
code when the portion of code was executed).

Execution quantity field 635 may store information that
identifies a quantity of times that the portion of code has been
executed. Resource field 640 may store resource information
that identifies resources used, by computing device 205, when
executing the portion of code. For example, resource field 640
may store resource information that identifies a quantity of
computations performed, clock cycles used, processor capac-
ity used, run time expended, a quantity of memory used, etc.,
associated with executing the portion of code.

Time field 645 may store a time value when the portion of
code is executed. For example, time field 645 may store
information that identifies a date and/or time (e.g., hours,
minutes, seconds, etc.) when the portion of code is executed.
In some implementations, time field 645 may store informa-
tion identifying a date and/or time associated with each time
the portion of code was executed. In some implementations,
time field 645 may store information identifying a date and/or
time associated with only the last time the portion of code was
executed. Test field 650 may store information that identifies
whether a unit test has been generated for the portion of code.
When a unit test has been generated for the portion of code,
test field 650 may store information that identifies a type of
unit test (e.g., a concrete unit test, a dynamic unit test, etc.)
associated with the portion of the code. Additionally, or alter-
natively, test field 650 may store information identifying the
unit test, such as a link to where the code that corresponds to
the unit test is stored, or simply a flag indicating whether or
not a unit test has been generated.

Certainty score field 660 may store information identifying
a level of certainty associated with the unit test stored in field
650. In some implementations, computing device 205 (e.g.,
code profiler component 420) may generate a certainty score

US 9,058,424 B1

11

for each unit test identified in data structure 600. Further
details regarding the generation of a certainty score are pro-
vided below.

Computing device 205 may create an entry or update an
entry in data structure 600 each time that the portion of the
code is executed. If the input values used to execute the
function have changed with respect to another input value
(e.g., a previous input value) or if the output value, obtained
by executing the portion of the code using previously used
input values, is different, computing device 205 may create a
new entry in data structure 600 for the portion of the code. If
the input values match those that have been previously used in
execution of the portion of the code and the output value
remains the same for those input values, computing device
205 may simply update an existing entry in data structure 600.
Ellipse 662 is an example of a new entry created in data
structure 600 and ellipses 664-670 are examples of existing
entries in data structure 600.

Returning to FIG. 5, process 500 may include determining
whether to generate a unit test (block 540). For example,
computing device 205 (e.g., decider component 410) may
monitor the information stored in data structure 600. Once
enough information has been stored in data structure 600 to
indicate a trend with respect to the functionality of the portion
of'code, computing device 205 may determine that a unit test
should be generated for the portion of code. In some imple-
mentations, computing device 205 may make the decision to
generate a unit test based on the portion of code being
executed more than a particular quantity of times with the
same inputs and achieving the same output. Thus, if the por-
tion of code is executed more than the particular quantity of
times, computing device 205 may determine that a unit test
should be generated for the portion of code.

Computing device 205 may determine that a unit test is to
be generated based on other factors. For example, in some
implementations, computing device 205 may determine
whether to generate a unit test based on information from a
user. For example, after execution of the portion of code,
computing device 205 may provide a user interface, to the
user, requesting information relating to the portion of code.
The requested information may include, for example, permis-
sible input values, a range of permissible input values, one or
more permissible data types for the input values, and/or other
information that may facilitate an understanding as to how the
portion of code is to operate. In some implementations, the
decision as to whether to generate a unit test may be based on
an identity of the user who is executing the portion of code.
For example, assume that a first user created the portion of
code. If computing device 205 determines that a second,
different user is causing computing device 205 to execute the
portion of code, computing device 205 may not collect usage
information relating to the execution of the portion of code
and may not generate a unit test for the portion of code being
executed by the second user.

When a unit test is not to be generated (block 540—NO),
process 500 may return to block 530 with computing device
205 obtaining and storing additional usage information for
the portion of code. If, on the other hand, a unit test is to be
generated (block 540—YES), process 500 may include gen-
erating a unit test for the portion of code (block 550). For
example, computing device 205 (e.g., test generator compo-
nent 415) may generate a unit test for the portion of code. In
one example, computing device 205 may generate lines of
code for the unit test that, when executed, enable computing
device 205 to execute the unit test to determine whether a

10

—

5

20

25

30

40

45

50

55

60

12

condition is associated with the portion of code. The follow-
ing code is an example of code that may be generated for a
unit test:

function AdditionRoutineTest

% Setup

inputs={2, 3};

% Exercise

result=AdditionRoutine(inputs{:});

% Verify

assert(result==5);

% No Teardown needed.

In this example, execution of the unit test causes input values
of 2 and 3 to be used in connection with a function, called
AdditionRoutine. Computing device 205 may compare the
value of output of the function, called “result,” to an expected
output value, 5.

In some implementations, computing device 205 may gen-
erate a concrete unit test. The concrete unit test may be based
on input values provided by the user (e.g., via a command
line) and an output value that has been consistently generated
by executing the portion of code based on the input values.
Thus, the concrete test tests the portion of code to ensure that
when the portion of code is executed with the input values, the
output value is obtained. In some implementations, the output
value may be an error condition. For example, computing
device 205 may also generate a concrete unit test based on a
particular set of input values, provided by the user, that, when
used in the execution of the portion of code, causes an error
condition to be consistently generated. Thus, computing
device 205 may generate concrete unit tests, for sets of input
values, which produce desired output values and/or error
conditions.

Computing device 205 may associate the concrete unit test
with the portion of code. For example, computing device 205
may store, in a data structure (e.g., data structure 600 of FI1G.
6), information identifying the concrete unit test in associa-
tion with the input values and the output value. With reference
to FIG. 6, computing device 205 has generated concrete unit
tests for entries identified by ellipses 664 and 666.

Additionally, or alternatively, computing device 205 may
generate a dynamic unit test. The dynamic unit test may be
based on input values that were not provided by the user, but
instead, were generated by computing device 205 to test the
functionality of the portion of code. Similar to the concrete
test, computing device 205 may generate dynamic unit tests,
for sets of input values, which produce output values and/or
error conditions. Computing device 205 may associate the
dynamic unit test with the portion of code. For example,
computing device 205 may store, in a data structure (e.g., data
structure 600 of FIG. 6), information identifying the dynamic
unit test in association with the input values, used for the
dynamic unit test, and the output value and/or error condition
obtained based on executing the portion of code with the input
values. With reference to FIG. 6, computing device 205 has
generated dynamic unit tests for entries identified by ellipses
668 and 670.

In some implementations, computing device 205 may
identify a unit test that is associated with another portion of
code that calls the portion of code or is called by the portion
of code. Computing device 205 may associate the identified
unit test with the portion of code.

Process 500 may also include associating the generated
unit test with the portion of code (block 560). For example,
computing device 205 (e.g., test generator 415) may associate
the generated unit test with information identifying the por-
tion of code. As an example and with reference to FIG. 6,
computing device 205 may store the code for the unit test or

US 9,058,424 B1

13

information identifying the unit test, such as a link to a storage
location of the code for the unit test, in test field 650.

Process 500 may further include determining certainty
information for the unit test (block 570). For example, com-
puting device 205 (e.g., code profiler component 420) may
generate certainty information for the unit test. In some
implementations, computing device 205 may generate a cer-
tainty score based on one or more factors relating to the unit
test. As an example and with reference to FIG. 6, the one or
more factors may include information indicating whether the
input values, in input field 615, were provided by the user (as
designated by source field 620); the quantity of times that the
input values, in input field 615, were used during an execution
of'the portion of code and resulted in the same output identi-
fied in output field 625 (as designated by execution quantity
field 635); and/or one or more other factors that may allow for
a level certainty of the unit test to be determined. In essence,
the certainty score may reflect the level of certainty that the
unit test accurately reflects the functioning of the portion of
code.

In some implementations, computing device 205 may gen-
erate a first score based on the information in source field 620
and a second score based on the value in execution quantity
field 635. With respect to the first score, computing device
205 may, for example, generate a higher first score for con-
crete unit tests than for dynamic unit tests. With respect to the
second score, computing device 205 may generate a higher
score for a unit test that is associated with a larger quantity of
executions (e.g., identified by execution quantity field 635)
than a unit test that is associated with a smaller quantity of
executions.

In some implementations, computing device 205 may gen-
erate a total score for the unit test based on a combination of
the first score and the second score. In some implementations,
computing device 205 may generate a total score for the unit
test based on a weighted combination of the first score and the
second score. For example, computing device 205 may assign
a weight value to the first score and the second score. The
weight values may differ—in other words, the amount that
each of the first score and the second score contributes to the
total score may vary.

By way of example, and with reference to FIG. 6, comput-
ing device 205 may generate a higher total score for the
concrete unit test, identified by ellipse 664, than for the con-
crete unit test, identified ellipse 666, since the concrete unit
test identified by ellipse 664, has been executed more times
than the concrete unit test identified by ellipse 666. Similarly,
computing device 205 may generate a higher total score for
the dynamic unit test, identified by ellipse 668, than for the
dynamic unit test, identified ellipse 670, since the dynamic
unit test identified by ellipse 668, has been executed more
times than the dynamic unit test identified by ellipse 670. As
another example, computing device 205 may generate a
higher total score for the concrete unit test, identified by
ellipse 666, than for the dynamic unit test, identified ellipse
668. In this situation, both unit tests have been executed the
same quantity of times. However, computing device 205 may
assign a higher score to the concrete unit test than the dynamic
unit test since the concrete unit test is based input values that
were provided by the user.

Returning to FIG. 5, process 500 may include storing the
certainty information (block 580). For example, computing
device 205 (e.g., code profiler 420) may store the certainty
information (e.g., thetotal score) in a data structure, such as in
field 660 of data structure 600. In some implementations,
computing device 205 may update the certainty information
for a unit test each time the unit test is executed, each time

10

15

20

25

30

35

40

45

50

55

60

65

14

additional usage information is received for a particular set of
input values and output value, and/or in other situations.

While FIG. 5 shows process 500 as including a particular
quantity and arrangement of blocks, in some implementa-
tions, process 500 may include fewer blocks, additional
blocks, or a different arrangement of blocks. Additionally, or
alternatively, some of the blocks may be performed in paral-
lel.

FIG. 7 is a flow chart of an example process 700 relating to
executing a unit test. In some implementations, process 700
may be performed by computing device 205. Alternatively,
all or a portion of process 700 may be performed by a device,
or group of devices, separate from, or in combination with,
computing device 205. FIGS. 8 A-8C are example user inter-
faces via which a user may interact with a portion of code.
FIGS. 9A-9E are example user interfaces that may be pro-
vided to a user in connection with the execution of a unit test.
In the description below, all or a portion of process 700 will be
described with references to data structure 600 of F1G. 6, the
user interfaces of FIGS. 8 A and 8B, and the user interfaces of
FIGS. 9A-9E.

While the following process focuses on executing unit tests
based on a portion of code being modified, implementations
described herein are not limited to this situation. Other events
may cause unit tests to be executed in other implementations.

As shown in FIG. 7, process 700 may include determining
whether a portion of code has changed (block 710). For
example, a user may cause computing device 205 to retrieve
code from a storage location, such as a memory within com-
puting device 205, data structure 215, or from another and
possibly remote location. Computing device 205 may pro-
vide, for display, a user interface that depicts all or a portion
of the code. Once displayed, the user may interact with the
code, for example, by adding one or more new portions of
code to the code, executing all or a portion of the code,
modifying one or more portions of the code, etc. Computing
device 205 may monitor all of the user’s interactions with the
code, including the execution of all or a portion of the code
and any modifications made to the code.

For example, as shown in FIG. 8A, user interface 800 may
include code 805. Code 805 may include a portion 810. Por-
tion 810 may include one or more lines of code (e.g., labeled
as lines 35, 36, and 37). A first line of code (i.e., line 35) may
identify function 812 (e.g., additionroutine(a,b)), an output
variable 814 (e.g., result), and/or input variables 816 (e.g., a
and b) associated with function 812. A second line of code
(i.e., line 36), when executed by computing device 205, may
implement function 812 based on an operation 818 (e.g.,
result=a+b). To execute portion 810, computing device 205
may, for example, provide a command line 820 that enables a
user to provide input values 822, associated with input vari-
ables 816 (e.g., a=2, b=3). Upon entering input values 822 via
command line 820, computing device 205 executes portion
810, using input values 822, to generate an output value 824
associated with output variable 814 (e.g., result=5). Addition-
ally, or alternatively, computing device 205 may, as shown in
FIG. 8B, provide a user interface 830 that allows the user to
test portion 810. As shown, user interface 830 may include
input value fields 832, a calculate button 834, and an output
value field 836. Input value fields 832 may allow the user to
provide input values, associated with input variables 816
(e.g., a=2, b=3). Calculate button 834 may cause, upon selec-
tion, computing device 205 to execute portion 810, using the
input values in field 832. Output value field 836 may display
the output value, corresponding to output variable 818,
obtained based on executing portion 810 using the input value
from field 832.

US 9,058,424 B1

15

Computing device 205 (e.g., usage monitor component
405) may monitor a user’s interaction with the code. For
example, assume that the user has modified portion 810 by
modifying operation 818. For example, the user may replace
the addition operation with a multiplication operation to cre-
ate a new operation 840, as shown in FIG. 8C. Computing
device 205 may detect when the user has modified portion
810 of code 805 to create new operation 840.

Returning to FIG. 7, when a portion of the code has not
changed (block 710—NO), process 700 may return to moni-
toring a user’s interaction with the code (block 710). If, on the
other hand, a portion of the code has changed (block 710—
YES), process 700 may further include identifying unit tests
relating to the portion of the code (block 715). For example,
computing device 205 (e.g., decider component 410) may
identify unit tests associated with the portion of code. In some
implementations, computing device 205 may identify the unit
tests from data structure 600 (FIG. 6). For example, comput-
ing device 205 may use information identifying the code and
information identifying the portion of code to access a portion
of data structure 600 that corresponds to that code and that
portion of code (e.g., by matching the information identifying
the code to information stored in code information field 605
and matching the information identifying the portion of code
to information stored in portion field 610). Computing device
205 may then reference test field 650 to identify unit tests
associated with the portion of code.

Process 700 may further include prioritizing the unit tests
based on the certainty information with which the unit tests
are associated (block 720). For example, computing device
205 (e.g., decider component 410) may obtain the certainty
score for each unit test and prioritize the unit tests based on
the certainty scores, such that a unit test with a higher cer-
tainty score is given priority over a unit test with a lower
certainty score. With reference to the example certainty
scores given in FIG. 6, computing device 205 would prioritize
the unit tests in the order shown (with the concrete test having
a certainty score of 100 being given priority over the other
unit tests).

Process 700 may include executing the highest priority unit
test (block 725). For example, computing device 205 (e.g.,
test executor component 425) may cause the highest priority
unit test to be executed in connection with the modified por-
tion of code. To execute the unit test, computing device 205
may use information from test field 650 (FIG. 6) to retrieve
the code corresponding to the unit test. Once retrieved, com-
puting device 205 may execute the code to perform the unit
test in connection with the modified portion of code. As an
example, and with reference to FIG. 6, execution of the unit
test may cause computing device 205 to execute the modified
portion of code using the input values, within ellipse 664,
identified in input field 615. Computing device 205 may
obtain usage information based on the execution of the modi-
fied portion of code. The usage information may include, for
example, an output value obtained based on the execution,
and/or other types of information relating to the execution of
the modified portion of code (e.g., such as resource informa-
tion).

Process 700 may include determining whether the unit test
failed (block 730). For example, computing device 205 (e.g.,
test executor component 425) may analyze the usage infor-
mation, obtained in connection with the execution of the unit
test, and may determine whether or not the unit test failed
based on the analysis. The unit test may fail, for example, if
the modification to the portion of code causes the portion of
code to perform differently than the portion of code per-
formed before the modification. For example, if the output

10

15

20

25

30

35

40

45

50

55

60

16

value obtained based on executing the modified portion of
code does not match the expected output value, stored in
output field 625 (FIG. 6), computing device 205 may deter-
mine that the unit test failed and that the modification to the
portion of code may have potentially introduced a bug into the
code. As an example, the modification to the portion of code
may have caused the code to perform in an unintended man-
ner.

Additionally, or alternatively, if any of the obtained
resource information (e.g., a quantity of computations, clock
cycles, memory used, run time, etc.) varies, by more than a
threshold amount, from the resource information stored in
resource field 640 (FIG. 6), computing device 205 may deter-
mine that the unit test failed. As one example, assume that the
resource information, stored in connection with a unit test,
indicates that the execution of the portion of code consumes a
first amount of memory. Assume further that the resource
information, obtained by executing the modified portion of
the code, indicates that the execution of the modified portion
of' code consumes a second amount of memory. If the second
amount of memory is greater or less than the first amount of
memory, by a threshold amount, computing device 205 may
determine that the unit test failed and that the modification to
the portion of code may have potentially introduced a bug into
the code.

Additionally, or alternatively, if the quantity of calls to
other portions of the code, made during execution of the
modified portion of the code, varies, by more than a threshold
amount, from the quantity of calls, made during execution of
the portion of the code, computing device 205 may determine
that the unit test failed. As one example, assume that usage
information, obtained in connection with the execution of the
portion of code, indicates a first quantity of calls to other
portions of the code. Assume further that the usage informa-
tion, obtained by executing the modified portion of the code,
indicates a second quantity of calls to other portions of the
code. If the second quantity of calls is different than the first
quantity of calls, by a threshold amount, computing device
205 may determine that the unit test failed and that the modi-
fication to the portion of code may have potentially intro-
duced a bug into the code.

Computing device 205 may use other factors, than those
given above, in determining whether a unit test failed.

When the unit test has been determined to succeed (block
730—NO), process 700 may include determining whether all
of'the unit tests have been executed (block 735). For example,
computing device 205 (e.g., test executor component 425)
may determine whether all of the unit tests associated with the
portion of code have been executed. All the unit tests may
correspond to every unit test that has been generated for the
portion of code or only those unit tests having certainty scores
above a particular threshold.

If all of the unit tests have been executed (block 735—
YES), process 700 may return to block 710 with computing
device 205 monitoring the user’s interaction with the code. If,
on the other hand, all of the unit tests have not been executed
(block 735—NO), process 700 may include executing the
next highest priority unit test (block 740). For example, com-
puting device 205 (e.g., test executor component 425) may
cause the next highest priority unit test to be executed in
connection with the modified portion of code. Computing
device 205 may perform the execution of the next highest
priority unit test in a manner similar to that described above
with respect to block 725. For example, computing device
205 may use information from test field 650 (FIG. 6) to
retrieve the code corresponding to the next highest priority
unit test. Once retrieved, computing device 205 may execute

US 9,058,424 B1

17

the code to execute the next highest priority unit test in con-
nection with the modified portion of code. As an example, and
with reference to FIG. 6, execution of the next highest priority
unit test may cause computing device 205 to execute the
modified portion of code using the input values, within ellipse
666, identified in input field 615, for the next highest priority
unit test. Computing device 205 may obtain usage informa-
tion based on the execution of the modified portion of code.
The usage information may include, for example, an output
value obtained based on the execution, and/or other types of
information relating to the execution of the modified portion
of code (e.g., such as resource information).

Process 700 may return to block 730 with a determination
of whether the unit test failed. Process 700 may continue in
the manner described above with respect to blocks 730, 735,
and 740. In those situations when a unit test fails (block
730—YES), process 700 may include notifying the user of a
possible condition in connection with the modified portion of
code (block 745). For example, computing device 205 (e.g.,
test executor component 425) may provide, for display, a user
interface that indicates that a potential condition is associated
with the modified portion of code. The user interface may
allow the user to perform an action, such as reverting the
modified portion of code back to the prior version of the
portion of code, providing replacement code for a section of
code that may be associated with a condition, and/or other
types of actions. Example interfaces that may be provided to
the user are described below in connection with FIGS. 9A-9E.
In some implementations, other types of user interfaces with
different types of information may be provided.

As an example, and with reference to FIG. 9A, user inter-
face 900 may include a previous behavior button 905, a cur-
rent behavior button 910, a show history button 912, and a
show profile button 914. Previous behavior button 905, when
selected by a user of computing device 205, may cause com-
puting device 205 to revert portion 810 of code 805 back to a
previous version (i.e., to cause the multiplication operation to
be changed back to an addition operation). Current behavior
button 910, when selected by the user, may cause computing
device 205 to leave the current version of portion 810 of code
805 as is (i.e., to leave the multiplication operation in portion
810). In this situation, computing device 205 may update the
unit test based on the current behavior of the portion 810 of
code 805.

Show history button 912, when selected by the user, may
cause computing device 205 to provide a user interface,
described below with respect to FIG. 9D, that includes infor-
mation associated with one or more previous unit tests per-
formed on the portion of code. Show profile button 914, when
selected by the user, may cause computing device 205 to
provide a user interface, described below with respect to FI1G.
9E, that includes a profile associated with the code. The
profile may identify a portion of the code with which unit tests
are associated, a quantity of conditions associated with the
code, resources used when executing the code, etc.

Additionally, or alternatively, computing device 205 may
provide, as shown in FIG. 9B, a user interface 920 that may
include a notification that identifies a particular section of the
portion of code that may include a condition. For example, as
shown in FIG. 9B, user interface 920 indicates that a potential
condition may be associated with Line 36 of portion 810 of
code 805. User interface 920 may also include a revert button
922 and a keep button 924. Revert button 922, when selected
by the user, may cause computing device 205 to replace one
ormore first lines of code, associated with the portion of code,
with one or more second lines of code associated with a
previous version of the portion of code. Keep button 924,

25

30

35

40

45

50

55

18

when selected by the user, may preclude computing device
205 from replacing the one or more first lines of code with the
one or more second lines of code.

Additionally, or alternatively, computing device 205 may
provide, as shown in FIG. 9C, a user interface 930 may
include a notification that identified a particular section of the
portion of code that may include a condition, in a manner
similar to that described above with respect to FIG. 9B. User
interface 930 may also include a text box 934 and a replace
button 936. Text box 934 may allow a user to provide one or
more lines of code. Replace button 936, when selected by the
user, may cause computing device 205 to replace one or more
lines of code, associated with the portion of code, with the one
or more lines of code in text box 934.

FIG. 9D shows a user interface 940 that may be provided in
response to selection of show history button 912. As shown in
FIG. 9D, user interface 940 may include a correct results
section 945 and an incorrect results section 950. Correct
results section 945 may include entries that correspond to
previously executed unit tests, associated with the portion of
code, when a condition was not detected. Each entry may
include a code portion field 947 and a test time field 949. Code
portion field 947 may include information associated with the
portion of code, such as a function (e.g., AdditionRoutine),
one or more input values (e.g., 2,2), one or more output values
(e.g., result: 4), etc., on which a unit test was performed. Test
time field 949 may identify a time, such as a date and/or time
(e.g., 5/12/2012 at 12:35:06) when the unit test was per-
formed. Thus, for example, correct results section 945 may
include entries that provide test parameters (e.g., function,
input values, an output value, a date, a time, etc.) for each unit
test, that was executed on the portion of code, that did not
result in detecting a condition. Incorrect results section 950
may include entries that correspond to previously executed
unit tests, associated with the portion of code, when a condi-
tion is detected. The entries may include code portion field
947 and test time field 949 that identify test parameters (e.g.,
functions, input values, an output value, a date, a time, etc.)
for each unit test, that was executed on the portion of code,
that resulted in detecting a condition.

FIG. 9E shows a user interface 960 that may be provided in
response to selection of profile button 914. As shown in FIG.
9E, user interface 960 may represent a code profile associated
with code 805 being executed by computing device 205. User
interface 960 may include a code coverage section 962, a
conditions section 964, a resource usage section 966, and a
users section 968. Code coverage section 962 may include
information that identifies a quantity of lines in code 805
(e.g., shown as 1012 lines of code) and a portion of the code
that is covered by unit tests (e.g., shown as 340 lines of
code/33.6 percent of the 1012 lines of code). Code coverage
field 962 may also, or alternatively, include information that
identifies a first portion, of the covered lines of code, for
which a concrete unit test has been created (e.g., shown as 110
concrete tests/10.9 percent of the 1012 lines of code). Code
coverage field 962 may also, or alternatively, include infor-
mation that identifies a second portion, of the covered lines of
code, for which a dynamic unit test has been created (e.g.,
shown as 230 concrete tests/22.7 percent of the 1012 lines of
code).

Conditions section 964 may include information that iden-
tifies a quantity of conditions associated with the code (e.g.,
shown as 27), a first portion of the quantity of conditions that
have been remedied (e.g., shown as 13/48.1 percent of the 27
conditions), a portion of the quantity of conditions that have
not been remedied (e.g., shown as 14/51.9 percent of the 27
conditions), etc.

US 9,058,424 B1

19

Resource usage section 966 may include information that
identifies a run time associated with executing the code (e.g.,
identified as RT1); a quantity of computations performed
when executing the code (e.g., identified as C1); a quantity of
memory used when executing the code (e.g., identified as
Meml); etc. User section 968 may store information that
identifies one or more users that have authored the code; that
are authorized to access the code, modify the code, and/or
execute the code; for which a unit test can be generated or
executed; etc.

While FIG. 7 shows process 700 as including a particular
quantity and arrangement of blocks, in some implementa-
tions, process 700 may include fewer blocks, additional
blocks, or a different arrangement of blocks. Additionally, or
alternatively, some of the blocks may be performed in paral-
lel. For example, while the unit tests were described as being
serially executed by computing device 205, implementations
described herein are not so limited. In some implementations,
two or more unit tests may be executed in parallel.

Systems and/or methods, as described herein, may enable
acomputing device to automatically generate a unit test to test
aportionof code. The systems and/or methods may enable the
computing device to automatically execute the unit test to
determine whether a condition is associated with the portion
of code. The computing device may provide a user interface
that includes test results that are generated based on executing
the unit test. The user interface may enable the user to pro-
vide, to the computing device and via the user interface, an
instruction to modify the code to remedy a condition identi-
fied by the test results. By generating and executing the unit
test in the background, and possibly without the user’s knowl-
edge, the user’s ability to debug code is improved.

The foregoing description provides illustration and
description, but is not intended to be exhaustive or to limit the
description to the precise form disclosed. Modifications and
variations are possible in light of the above implementations
or may be acquired from practice of the implementations. For
example, while the above description focused on identifying
potential issues with respect to creating and editing code,
implementations described herein are not so limited. For
example, systems and methods, as described herein, may be
equally applicable to creating and editing graphical user inter-
faces. For example, a computing device may monitor and
record a user’s interaction and testing of a graphical user
interface, such as mouse movements and clicks, keys that
were selected from a keyboard, etc. The computing device
may create one or more tests for testing the operation of the
graphical user interface based on the recorded information. If
the user changes the graphical user interface, the computing
device may automatically execute the one or more tests and
inform the user if the graphical user interface is operating, as
a result of the change, in a manner that is different than the
graphical user interface was previously operating.

It will be apparent that example aspects, as described
above, may be implemented in many different forms of soft-
ware, firmware, and hardware in the implementations illus-
trated in the figures. The actual software code or specialized
control hardware used to implement these aspects should not
be construed as limiting. Thus, the operation and behavior of
the aspects were described without reference to the specific
software code—it being understood that software and control
hardware could be designed to implement the aspects based
on the description herein.

Further, certain implementations may involve a component
that performs one or more functions. These components may
include hardware, such as an ASIC or a FPGA, or a combi-
nation of hardware and software.

10

15

20

25

30

35

40

45

50

55

60

65

20

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit disclosure of the
possible implementations. In fact, many of these features may
be combined in ways not specifically recited in the claims
and/or disclosed in the specification. Although each depen-
dent claim listed below may directly depend on only one other
claim, the disclosure of the implementations includes each
dependent claim in combination with every other claim in the
claim set.

No element, act, or instruction used in the present applica-
tion should be construed as critical or essential to the imple-
mentations unless explicitly described as such. Also, as used
herein, the article “a” is intended to include one or more items
and may be used interchangeably with “one or more.” Where
only one item is intended, the term “one” or similar language
is used. Further, the phrase “based on” is intended to mean
“based, at least in part, on” unless explicitly stated otherwise.

What is claimed is:

1. A method comprising:

obtaining usage information relating to an execution of a

portion of code,

the usage information including a set of input values and
an output value obtained based on executing the por-
tion of code using the set of input values,
the set of input values being provided by a user, and

the obtaining the usage information being performed by
a computing device;

detecting that the portion of code has been executed a

particular quantity of times,

the particular quantity of times being more than one
time,

the detecting being performed by the computing device,
and

the detecting being performed using the set of input
values and the output value;

generating a unit test, for the portion of code, based on

detecting that the portion of code has been executed the

particular quantity of times with a particular input value

resulting in a particular output value each time of the

particular quantity of times,

the unittest being to pass the particular input value to the
portion of code, and

the unit test being to confirm that an output value of
calling the portion of code is the same as the particular
output value associated with executing the portion of
code the particular quantity of times,

the generating being performed by the computing
device;

detecting a modification to the portion of code,

the detecting the modification to the portion of code
being performed by the computing device;
executing, based on detecting the modification to the por-
tion of code, the unit test in connection with the modified
portion of code,
the executing being performed by the computing device;
and
providing a notification when the execution of the unit test
fails,
the providing being performed by the computing device.
2. The method of claim 1, further comprising:
identifying the portion of code, from within the code, based
on at least one of:
the portion of code being previously edited or executed
a particular quantity of times,
the portion of code being shared with one or more users,
the portion of code being submitted to a file exchange,

US 9,058,424 B1

21

the portion of code being associated with more than a
particular amount of documentation,
the portion of the code being published or ready for
publishing, or
the portion of the code being associated with metrics
having at least a particular level of complexity.
3. The method of claim 1, where the usage information
further includes information associated with at least one of:
a first period of time associated with executing the portion
of code,
a first amount of memory used when executing the portion
of code,
a first amount of computations associated with executing
the portion of code, or
a first amount of times the portion of code calls, or is called
by, one or more other portions of code, associated with
the code, and
where executing the unit test includes:
obtaining additional usage information,
the additional usage information including informa-
tion associated with at least one of:
a second period of time associated with executing
the modified portion of code,
a second amount of memory used when executing
the modified portion of code,
a second amount of computations associated with
executing the modified portion of code, or
a second amount of times the modified portion of
code calls, or is called by, one or more other
portions of code.
4. The method of claim 3, further comprising:
determining that the unit test failed when at least one of:
the first period of time differs from the second period of
time by more than a first threshold amount,
the first amount of memory differs from the second
amount of memory by more than a second threshold
amount,
the first amount of computations differs from the second
amount of computations by more than a third thresh-
old amount, or
the first amount of times differs from the second amount
of times by more than a fourth threshold amount.
5. The method of claim 1, where generating the unit test
includes:
generating a plurality of unit tests, and
where the method further comprises:
generating a first certainty score for a first unit test of the
plurality of unit tests,
the first certainty score reflecting a first level of cer-
tainty that the first unit test reflects a functionality
of the portion of code; and
generating a second certainty score for a second unit test
of the plurality of unit tests,
the second certainty score reflecting a second level of
certainty that the second unit test reflects the func-
tionality of the portion of code.
6. The method of claim 5, where executing the unit test
includes:
executing the first unit test before executing the second unit
test based on the first certainty score and the second
certainty score,
the first certainty score reflecting a higher level of cer-
tainty than the level of certainty reflected by the sec-
ond certainty score.
7. The method of claim 1, further comprising:
generating a plurality of unit tests,

10

15

30

35

40

45

50

55

60

22

each unit test, of the plurality of unit tests, being asso-
ciated with a certainty score,
where executing the unit test includes:
executing the plurality of unit tests in an order deter-
mined by the certainty scores.
8. The method of claim 1, further comprising:
generating a certainty score for the unit test,
the certainty score reflecting a level of certainty that the
unit test reflects a functionality of the portion of code,
and
the certainty score being based on:
whether the set of input values were provided by the
user, and
a quantity of times that the portion of code has been
executed,
where executing the unit test includes:
determining whether to execute the unit test before
executing another unit test based on the certainty
score.
9. The method of claim 1, where the notification includes at
least one of:
information identifying one or more lines of code, within
the modified portion of code, that caused the unit test to
fail,
a first object that, when selected, causes the modified por-
tion of code to revert back to the portion of code, or
a second object that, when selected, causes user-provided
one or more lines of code to replace the identified one or
more lines of code.
10. A computing device comprising:
a processor programmed with instructions to:
obtain usage information relating to an execution of a
function within code,
the usage information including a set of input values
and an output value obtained based on executing
the function using the set of input values,
the set of input values being provided by a user;
determine that the function has been executed a particu-
lar quantity of times,
the particular quantity of times being more than one
time,
the function being determined to be executed the par-
ticular quantity of times based on the set of input
values and the output value;
generate a unit test, for the function, based on determin-
ing that the function has been executed the particular
quantity of times with a particular input value result-
ing in a particular output value each time of the par-
ticular quantity of times,
the unit test being to pass the particular input value to
the function, and
the unit test being to confirm that an output value of
calling the function is the same as the particular
output value associated with executing the function
the particular quantity of times;
detect a modification to the function; and
execute, based on detecting the modification to the func-
tion, the unit test in connection with the modified
function.
11. The computing device of claim 10, where the processor
is further to:
use the unit test to determine whether the modification to
the function has caused the function to perform differ-
ently than the function performed prior to the modifica-
tion.
12. The computing device of claim 11, where the processor
is further to:

US 9,058,424 B1

23

provide, when the modification to the function has caused
the function to perform differently than the function
performed prior to the modification, a notification,
the notification including at least one of:
information identifying one or more lines of code,
within the modified function, that caused the func-
tion to perform differently,
a first object that, when selected, causes the modified
function to revert back to the function, or
a second object that, when selected, causes a user-
provided one or more lines of code to replace the
identified one or more lines of code.
13. The computing device of claim 11, where the processor
is further to:
provide no notification when the modification to the func-
tion has not caused the function to perform differently
than the function performed prior to the modification.
14. The computing device of claim 10, where the processor
is further to:
generate a certainty score for the unit test,
the certainty score reflecting a level of certainty that the
unit test reflects a functionality of the function, and
the certainty score being based on:
whether the set of input values were provided by the
user, and
a quantity of times that the function has been
executed, and
where, when using the unit test, the processor is further to:
determine whether to execute the unit test before execut-
ing another unit test based on the certainty score.
15. The computing device of claim 10, where the processor
is further to:
identify the function, from within the code, based on at
least one of:
the function being previously edited or executed another
particular quantity of times,
the function being shared with one or more users,
the function being submitted to a file exchange,
the function being associated with more than a particular
amount of documentation,
the function being published or ready for publishing, or
the function being associated with metrics having at
least a particular level of complexity.
16. A non-transitory computer-readable medium for stor-
ing instructions, the instructions comprising:
one or more instructions that, when executed by a proces-
sor of a computing device, cause the processor to:
detect a modification to a function within code,
the function being associated with a set of input values
and a first output value that is obtained based on
executing the function using the set of input values,
the set of input values being provided by a user;
receive information indicating that the function has been
executed a particular quantity of times,
the particular quantity of times being more than one
time, and
the function being executed based on the set of input
values;
identify a unit test based on detecting the modification to
the function,
the unit test being further identified based on detect-
ing that the function has been executed the particu-
lar quantity of times with a particular input value
resulting in a particular output value each time of
the particular quantity of times,
the unit test being to pass the particular input value
to the function, and

15

20

25

30

35

45

50

55

60

65

24

the unit test being to confirm that an output value of
calling the function is the same as the particular
output value associated with executing the func-
tion the particular quantity of times;
execute the identified unit test in connection with the
modified function to cause the modified function to be
executed using the set of input values to obtain a
second output value; and
provide a notification when the second output value does
not match the first output value.

17. The computer-readable medium of claim 16, where the
one or more instructions to cause the processor to identify a
unit test include:

one or more instructions to:

identify a first unit test and a second unit test,
the first unit test being associated with a first certainty
score,
the first certainty score reflecting a first level of
certainty that the first unit test reflects a function-
ality of the function, and
the second unit test being associated with a second
certainty score,
the second certainty score reflecting a second level
of certainty that the second unit test reflects the
functionality of the function, and
the second level of certainty being higher than
the first level of certainty,
where the one or more instructions to cause the proces-
sor to execute the identified unit test include:
one or more instructions to:
execute the second unit test before executing the
first unit test based on the second level of cer-
tainty being higher than the first level of cer-
tainty.

18. The computer-readable medium of claim 16, where the
instructions further comprise:

one or more instructions to:

generate a certainty score for the identified unit test,
the certainty score reflecting a level of certainty that
the identified unit test reflects a functionality of'the
function, and
the certainty score being based on:
whether the set of input values were provided by
the user, and
a quantity of times that the function has been
executed, and

where the one or more instructions to cause the processor to

execute the identified unit test include:

one or more instructions to determine whether to execute
the identified unit test before executing another unit
test based on the certainty score.

19. The computer-readable medium of claim 16, where the
notification includes at least one of:

information identifying one or more lines of code, within

the modified function, that caused the second output
value not to match the first output value,

a first object that, when selected, causes the modified func-

tion to revert back to the function, or

a second object that, when selected, causes a user-provided

one or more lines of code to replace the identified one or
more lines of code.

20. The computer-readable medium of claim 16, where the
instructions further include:

one or more instructions to:

receive a request for a results of past executions of the
function; and

US 9,058,424 B1
25

provide, based on receiving the request, a user interface
that includes at least one:
a list of past results when the function operated prop-
erly when executed, or
a list of past results when the function operated 5
improperly when executed.
21. The computer-readable medium of claim 16, where the
instructions further include:
one or more instructions to:
receive information, from the user, identifying the modi- 10
fied function; and
update the identified unit test based on receiving the
information identifying the modified function.

#* #* #* #* #*

26

